Diseño del blog

News

Nanoparticle-based anticorrosion coatings for molten salts applications.

High-temperature molten salt systems are employed in a wide variety of industrial applications, linked to energy production and storage, such as concentrated solar power, waste heat recovery, storage plants, fuel cells nuclear, etc. The reactivity of these salts is one of the main issues to address for the employment of affordable steels as constructive materials. In this work, the performance of a polymeric anticorrosion coating based on nanoparticles is analyzed for carbon and stainless steel subjected to solar salt, at 390 and 565 °C, respectively.

The application of the protective coating produced a more homogeneous corrosion layer in both steels compared to uncoated samples. For carbon steel, the spallation of the corrosion layer was mitigated. For stainless steel, the corrosion was significantly reduced. The was confirmed by SEM-EDX confirmed the inclusion of alumina nanoparticles into the corrosion scale and their reaction with stainless steel to form mixed oxides was corroborated by XRD. Molten salts were analyzed by ICP. The obtained results pave the way for anticorrosion coatings based on nanoparticles for high temperature molten salts applications.

Introduction
Considering the current worldwide growth in energy demand and the necessity of reducing greenhouse gas emissions, energy sources with low carbon footprint should be promoted. In this sense, both renewable energies and nuclear power can play a vital role. Among renewable energy sources, concentrating solar power (CSP) plants already offer a mature technology based on molten salts to store the excess of solar energy at industrial scale, increasing their dispatchability [1]. Similar molten salts systems have been also proposed for energy conversion being implemented as Carnot batteries into the electrical grid [2]. Moreover, next generation nuclear power reactors are based on molten salt reactor (MSR) with fluoride or chloride salts [3].

The main problem related to the use of molten salts is their marked corrosivity, which leads to the use of special stainless steels and alloys. In this sense, there have been many attempts to reduce the corrosion effect of molten salt on the constructive materials, aiming at cheaper materials for the molten salts systems to improve feasibility of the mentioned above applications.

Solemaini and Galetz tested the application of an aluminum-based slurry, followed by a thermal treatment in Ar atmosphere, as corrosion protection [4]. The aluminized samples of ferritic-martensitic P91 and austenitic SS304 performed better in solar salt, specially the last one. Later, this research group investigated the corrosion prevention ability of that coating for iron and nickel-based materials (P91 steel, SS316L, Inconel 600 and high-purity nickel) in molten NaCl-KCl [5]. The precipitation of secondary phases within the intermetallic compounds formed in the aluminide matrix was found to govern the coating effectiveness. Fe-rich aluminide coatings were found to be more resistant than Ni-rich ones. Thus, the corrosion resistance of coated materials ranged as Inconel 600 < high-purity nickel < SS316L < P91 steel. Audigié et al. investigated a couple of similar coatings, slurry aluminide and electrodeposited nickel-aluminide, on P91 in solar salt [6]. The coated samples exhibited lower mass gain and no evidence of significant spallation. In a following work, Audigié et al. analyzed the anticorrosion performance of a slurry iron-aluminide coating on P91 alloy in eutectic ternary carbonate salt (K2CO3-Na2CO3-Li2CO3) under static and dynamic conditions [7]. The coated samples performed better but the attack on the aluminide coating was not uniform.

Coatings composed of intermetallic compounds have been proposed as well for chloride salts. Gómez-Vidal analyzed several MCrAlX coatings on Incoloy 800H and SS310 in NaCl-KCl, where M = Ni and/or Co and X = Y, Ta, Hf and/or Si [8]. The NiCoCrAlY coating demonstrated the best performance. The corrosion reduction was attributed to the formation of an alumina layer during a thermal treatment prior to corrosion. Similarly, the Ni20Cr coating showed a protective effect compared to uncoated SS304 subjected to ZnCl2-KCl salt [9].

Other types of coatings have been reported in literature. For instance, the performance of a sol-gel coating of yttria-doped zirconia was tested for the P91 steel in solar salt by Encinas-Sánchez et al. [10]. The corrosion results were comparable to uncoated SS304. Recently, Kondaiah and Pitchmani presented a novel approach to corrosion mitigation based on fractal texturized surfaces [11]. Studies with SS316, Incoloy 800H, Inconel 718, Inconel 624 and Haynes 230 in solar salt revealed a corrosion rate reduction of approximately 30 % for ferrous alloys and 80 % for high nickel content alloys.

Different spray coatings have been proposed for protecting the constructive materials of CSP plants in contact with molten salts. Rubino et al. employed a compact plasma spray process for applying a metallic coating on T22 steel [12]. The Inconel 625 coating worked as corrosion inhibitor when exposed to solar salt at 500 °C. The application of a Ni3Al coating by plasma spray on SS347 for protection against solar salt at 565 °C was studied by Yasir et al. [13]. After an initial stage of fast oxidation, the Ni3Al coating stabilized and hindered the diffusion of species from the salt to the substrate and vice versa, which lead to enhanced corrosion resistance. Luo et al. demonstrated the protective behavior of a FeAl coating on SS316L subjected to LiNaK molten carbonate salt at 700 °C [14]. The coating was applied by cold spray method combined with a post heat treatment. The authors attributed the enhanced corrosion resistance to the formation of a LiAlO2 layer on the surface of the coating.

Thermal spray coatings have been also applied for reducing the hot corrosion of boiler steels in molten salts environment. Goyal et al. reported a positive evaluation of a chromium oxide coating reinforced with carbon nanotubes (CNT) for protecting T22 steel in Na2SO4 – 60 wt% V2O5 environment under cyclic conditions [15]. The CNTs filled the pores in the Cr2O3 coating and blocked the penetration of corroding species. After 50 cycles at 700 °C the coatings remained intact, with no spallation of the corrosion layer. Following the same experimental conditions, the performance of several Cr3C2-NiCr coatings was evaluated on T22 steel by Singh et al. [16]. All the coatings provided corrosion mitigation due to the formation of a chromium carbide layer on the coated surface. De la Roche et al. analyzed the corrosion resistance of bilayer coatings deposited by atmospheric plasma spray on Inconel 625 substrates in Na2SO4 –V2O5 environment under cyclic conditions [17]. The coatings consisted in dense Ceria-Yttria Stabilized Zirconia (CYSZ) and Yttria Stabilized Zirconia (YSZ) with different relative thicknesses of each layer. Although the dense CYSZ presented vertical cracks, the thermal protection was preserved.

Graphitization of constructive materials has also proven its potential as corrosion inhibitor. This approach was introduced for carbon steel (CS) tested in Hitec XL salt by Grosu et al. [18]. A significant corrosion reduction was obtained due to the formation of a CaCO3 layer on the material surface [18], [19]. Similar tests in binary nitrate salt resulted in twofold reduction of corrosion rate for graphitized samples and six times when graphite is added directly to the salt [20]. The formation of iron carbide was determined to be the protection mechanism. The graphitization worked as well in harsher conditions, such as carbonate salts for SS310 and SS347, due to the formation of carbides and carbonates, respectively [21]. The carbonates presented higher resistance and produced lower Cr dissolution.

This corrosion mitigation method by forming a protective layer on the constructive materials was also explored for alumina forming alloys (AFA). Gómez-Vidal et al. preoxidized Inconel 702, Haynes 224 and Kanthal APMT to form a passivation layer and then exposed the materials to MgCl2-KCl salt in isothermal and cyclic conditions [22], [23]. In both cases, the pretreated Inconel 702 showed the highest corrosion resistance. Ding et al. employed the same protocol for two Fe-Cr-Al alloys before testing them in MgCl2-NaCl-KCl salt [24]. The alumina scale inhibited the Cr and Fe dissolution and reduced the penetration of corrosive impurities.

Instead of applying any coating to the constructive materials, several authors proposed the addition of different elements and/or compound has been proposed as corrosion prevention method. Frangini et al. demonstrated that adding Mg and Ca to binary eutectic Li/Na carbonate salt resulted in a corrosion reduction of the SS 316 l due to the formation of Mg/Ca-doped lithium ferrite layer on its surface [25]. However, the beneficial effect was found for significant concentrations of additives, 5 and 10 mol%, whereas a detrimental impact was shown for 1.5 mol%.

The addition of sacrificial Mg (1 wt%) to molten MgCl2-NaCl-KCl (60–20-20, mol%) was also demonstrated to reduce the corrosion by Ding et al. [24]. The authors found a decrease in the corrosion rates of ~83 % for SS310, ~70 % for Incoloy 800H and ~ 94 % for Hastelloy C-276. Xu et al. showed that the corrosion of Inconel 625 in NaCl-CaCl2-MgCl2 salt can be reduced by adding MgCl2.6H2O [26]. The corrosivity of the chloride salt was mitigated by in-situ generation of MgO particles and the formation of MgCr2O4 layers. Also in ternary chloride salt, Zhu et al. exhibited corrosion reduction effect for Nisingle bondFe based alloy (HT700) by addition of Al powder [27]. The authors reported an increase of this effect with the increase of the Al content, and the hindering of the outwards diffusion of Cr by a diffusion layer rich in aluminum beneath the corrosion scale.

Alternatively, although the development of molten salts-based nanofluids (NFs) targeted the enhancement of their thermophysical properties, mainly specific heat capacity and thermal conductivity, a corrosivity reduction was found as a side effect. Nithiyanantham et al. analyzed the corrosion of CS in eutectic nitrate salt-based nanofluids with 1 wt% of Al2O3, SiO2 and TiO2 as additives [28], [29]. The authors reported a more than 50 % corrosion thickness reduction for Al2O3 and SiO2 containing NFs and a threefold thinner layer for the TiO2 case, which were attributed to the nanoparticles incorporation into the corrosion layer. Also studying nitrate salts, Ma et al. found a corrosion reduction by testing SS304 in solar salt-based NFs with SiO2 and Al2O3 in 1 wt% concentration [30]. Moreover, Ma et al. reported a corrosion reduction under dynamic conditions of SS304 and SS316L in quaternary nitrate-nitrite molten salt associated to SiO2 nanoparticles addition [31].

Similar effects have been reported for carbonate-based nanofluids. Grosu et al. analyzed ternary eutectic Li/Na/K carbonates doped with 1 wt% of SiO2 nanoparticles, showing a peeling-off reduction and a twofold decrease of the corrosion layer thickness compared to the base salt for SS310 [32]. Also, with 1 wt% of SiO2 nanoparticles but in eutectic Li/K carbonate salt, Iyer found the same reduction compared to the base fluid for SS304 [33]. The same result was obtained by Schuller et al. [34].

A comprehensive review of the effect of molten salts-based nanofluids on the corrosion aspect has been recently carried out by Ibrahim et al. [35].

In recent work, we confirmed, experimentally and by molecular dynamic simulation, that the diffusion of nanoparticles into the constructive materials is one of the mechanisms responsible for the corrosion mitigation of molten salt nanofluids [36]. Based on these insights, in this work, we explore a nanoparticle-based coating developed to enhance and exploit the anticorrosion effect of nanoparticle against a molten salt attack on metallic surfaces.

This work aims to explore the feasibility of this approach for mitigating the corrosion issue related to the molten salts employed in many applications, including storage plants, CSP power plants, nuclear, power cells, hydrogen production, etc. Concretely, the coating has been investigated on A516 Gr70 carbon steel and 304 stainless steel, which are constructive materials for low and high-temperature tanks employing solar salt, respectively. In this sense, the corrosion tests were carried out at 390 °C for carbon steel and 565 °C for stainless steel. The obtained results corroborated the corrosion reduction ability of the polymeric coating based on alumina nanoparticles, leading to a decrease in localized corrosion and corrosion rate.

Section snippets
Materials and preparation
The coating is composed of 1-Methyl-2-pyrrolidinone (NMP), P84 polyimide and Al2O3 nanoparticles. The NMP was purchased 99 % pure from Sigma Aldrich. The P84 polyimide powder SG (solution grade) was provided by Ensinger. 13 nm size alumina nanoparticles were acquired from Sigma Aldrich with a purity of 99.8 %.

A mixture of sodium and potassium nitrates, called solar salt, was employed for the corrosion experiments: 60 % NaNO3–40 % KNO3 (in weight concentration). Sodium and potassium nitrates

Results and discussion
For the sake of clarity, the results and their discussion are separated in two sub-sections, the first one for analyzing the results of carbon steel at 390 °C, and the second section devoted to stainless steel tested at 565 °C.

Conclusions
In this work, the performance of an anticorrosion polymeric coating based on alumina nanoparticles was tested in solar salt (NaNO3–KNO3, 60-40 wt%) at 390 °C and 565 °C for preventing the degradation of carbon and stainless steels, respectively. For both steels, static immersion corrosion tests for coated and uncoated samples in air atmosphere were carried out. The obtained results led to the following conclusions:
The application of the coating on carbon steel samples favored the formation of a 


CRediT authorship contribution statement
Luis González-Fernández: Conceptualization, Methodology, Formal analysis, Investigation, Writing-Original draft preparation, Writing- Review and Editing, Supervision. Ángel Serrano: Investigation, Writing- Review and Editing. Elena Palomo: Writing- Review and Editing. Yaroslav Grosu: Conceptualization, Methodology, Formal analysis, Writing- Review and Editing, Supervision, Project administration.

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements
The authors express their sincere thanks to Cristina Luengo and Yagmur Polat for their technical support and to Diana Lopez for her assistance with ICP measurements.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

by A. Jacobs 4 February 2025
"..No quiero que mis hijos caminen entre placas solares recibiendo todas las emisiones..", son las palabras en una emisora de radio de nivel nacional, de un miembro de la plataforma que lucha contra la instalación de un gran proyecto fotovoltaico en Castilla-León. Esta persona, con educación universitaria en la rama sanitaria, no solo opina de algo de lo que no tiene muchos conocimientos (deporte nacional últimamente), sino que practica un activismo radical del que los medios actuales dan soporte y altavoz si cumple una premisa, ser víctima o supuesta víctima de algo...se tenga o no razón...o directamente sea absurdo. Los proyectos de energías renovables, como todos en este país, tienen que cumplir una serie de requisitos en su diseño, normas en su ejecución y controles durante su normal operación; pero como ocurre en muchas actividades existen malos profesionales, políticos corruptos y demás personajes que ensucian el trabajo de los buenos profesionales, que en inmensa mayoría, hacen crecer con su esfuerzo este sector. En esta atmósfera es importantísimo que los ciudadanos estén informados, que tengan un mínimo de conocimientos sobre energías renovables, medio ambiente, ecología,...conceptos que oímos cientos de veces todos los días y que van a condicionar nuestra vida, o lo están haciendo ya. Por tanto es clave que esa información sea objetiva y veraz, para apoyar o confrontar con aquellos proyectos que nos parezcan injustos. Pero, ¿qué ocurre si los propios medios/profesionales no cumplen esa misión formativa o directamente no saben de lo que hablan?, mal asunto. Un portal de internet sobre ecologismo, que se jacta de ser uno de los mas visitados del país, publicaba recientemente un artículo sobre la planta termosolar de Crescent Dunes en Estados Unidos, donde resumiendo dicen que es: "...un proyecto fotovoltaico, que absorbe suficiente calor para que unas turbinas de vapor giraran y almacenaran la energía en forma de sal fundida.."...¿proyecto fotovoltaico?, ¿varias turbinas?, ¿las turbinas girando almacenan la energía en forma de sal fundida?,...
by Ilde Rubio 29 January 2025
Dos empresas, Larsen & Toubro y POWERCHINA, seleccionadas como contratistas preferidos de ingeniería, adquisiciones y construcción (EPC) para el proyecto, que se construirá en Abu Dhabi, también selecciona a Jinko Solar y JA Solar como proveedores preferidos de módulos solares fotovoltaicos (PV) y a CATL como proveedor preferido para el sistema de almacenamiento de energía en baterías (BESS) para el proyecto combinado de energía solar y BESS, el más grande del mundo. Masdar, en colaboración con EWEC, está desarrollando el primer proyecto combinado de energía solar y BESS a gigaescala "las 24 horas" del mundo, capaz de entregar 1 GW de energía limpia continua. Abu Dhabi Future Energy Company PJSC – Masdar, líder en energía limpia de los Emiratos Árabes Unidos, anunció hoy proveedores y contratistas preferidos para apoyar el desarrollo del primer proyecto a gran escala del mundo a gigaescala "las 24 horas", que combinará energía solar fotovoltaica (PV) y Almacenamiento en baterías para suministrar energía renovable ininterrumpida. JA Solar y Jinko Solar, dos de los proveedores de módulos fotovoltaicos más grandes del mundo, y CATL, el mayor fabricante de baterías del mundo y un proveedor líder de sistemas de almacenamiento de energía en baterías (BESS), son proveedores preferidos para el proyecto, anunció Masdar hoy en la Semana de la Sostenibilidad de Abu Dhabi. (ADSW). Larsen & Toubro y POWERCHINA han sido seleccionados como contratistas preferidos de ingeniería, adquisiciones y construcción (EPC) para el proyecto, que se construirá en Abu Dhabi.
by Ilde Rubio 27 January 2025
Tras batir récord en número de asistentes y patrocinadores en la edición de 2024, RENMAD Almacenamiento vuelve los días 26 y 27 de marzo de 2025 para celebrar su sexta edición. El 2025 estará cargado de novedades, la primera de ellas es que movemos nuestra sede a Sevilla. En un momento crucial en el que la integración de las energías renovables son esenciales para avanzar en la descarbonización y fomentar la flexibilidad no fósil, estamos trabajando en un programa que abordará todas las incertidumbres del sector, incluyendo el mercado de capacidad, las diferencias regulatorias entre comunidades autónomas y la búsqueda de nodos menos saturados. Además, se presentarán soluciones innovadoras frente a la bajada de la demanda como la electrificación de los puertos marítimos y el aprovechamiento de los data centers para que estos grandes consumidores de electricidad operaren de la manera más sostenible. Mas Información
by Ilde Rubio 14 January 2025
10% DE DESCUENTO PARA INSCRIPCIONES 1 MES ANTES DEL INICIO Fórmate con título de máster y certificación para profesionales y lidera la estrategia de sostenibilidad energética de una organización. El Máster en Energías Sostenibles nace de la vocación de TÜV SÜD de generar valor diferencial en el desarrollo sostenible como eje transversal, con un enfoque práctico, ágil y dinámico. Ante la latente necesidad del mercado laboral y del mundo empresarial por formar a los futuros profesionales comprometidos, que van a liderar el cambio hacia modelos productivos más sostenibles, TÜV SÜD ha desarrollado un completo programa Máster que abarca los tres vectores energéticos esenciales para conseguir el objetivo de 0 emisiones en 2050: Hidrogenos Verde, Eólica y Fotovoltaica. Solo los mejores profesionales podrán liderar los cambios que el medio ambiente necesita para reducir el calentamiento global del planeta, orientados a los objetivos de desarrollo sostenible (ODS) dentro del marco de la Agenda 2030. ¿Quieres ser uno de ellos? Acceder al curso
by Ilde Rubio 9 January 2025
Desde EUNOIA Renewable, en colaboración con la Cámara de Comercio Franco-Española , te invitan a unirte a nuestra delegación exclusiva para asistir a Hyvolution Paris, del 28 al 30 de enero de 2025 en Paris Expo – Porte de Versailles. 👉 BENEFICIOS EXCLUSIVOS al unirte a la subdelegación: ✔ Acceso VIP gratuito a la feria Hyvolution. ✔ Encuentros B2B personalizados con los principales actores del sector, adaptados a tus necesidades específicas. ✔ Oportunidad de ser ponente: Posibilidad de participar como conferenciante en una de las sesiones del evento. 👉¿POR QUÉ ASISTIR a Hyvolution París 2025? ✔ Evento de referencia: Hyvolution es un encuentro internacional que reúne a todos los actores del sector del hidrógeno, abarcando toda la cadena de valor en los mercados de movilidad, energía e industria. ✔ Amplia participación: Se espera la asistencia de más de 600 expositores y marcas y alrededor de 11.500 visitantes profesionales, consolidando su papel como plataforma clave para la innovación y la colaboración en torno al hidrógeno. ✔Programa enriquecedor: El evento contará con más de 130 presentaciones sobre proyectos y soluciones en Europa y en todo el mundo, ofreciendo una panorámica excepcional del sector. 📝Si estás interesado en formar parte de esta experiencia única y potenciar tu presencia en el mercado global del hidrógeno, escríbe a info@eunoiarenewable.com y te proporcionaran más información para que aproveches al máximo el evento. ¡No pierdas la oportunidad de conectar, innovar y liderar en Hyvolution París 2025 de la mano de EUNOIA Renewable !.
by Ilde Rubio 7 January 2025
Suncom ha desarrollado una solución innovadora de generación calor. SunFleet patentado establece un nuevo estándar en eficiencia y rendimiento que garantiza una generación de calor fiable y sostenible. Alternativa asequible Escudo de Energía Estable Plug and Play Solución ecológica Fundada por Henk Arntz, Suncom Energy está impulsada por la misión de revolucionar el consumo de energía industrial proporcionando soluciones de calor limpias, sostenibles y fiables para la industria. Su equipo está comprometido a ayudar a las empresas a alejarse de los combustibles fósiles, asegurando un futuro más verde para todos. Con un enfoque en la eficiencia y la escalabilidad, nuestro objetivo es habilitar a las empresas con energía renovable para que satisfagan sus necesidades industriales mientras reducen significativamente su huella de carbono. SABER MÁS
by Ilde Rubio 6 January 2025
Fuente: Protermosolar La energía termosolar es clave en la transición energética, y hasta la fecha se han desarrollado cuatro tipos principales de plantas termosolares. Cada una con sus características y niveles de implantación: ​➡️ Canales parabólicos: La tecnología más extendida, conocida como colectores cilindro-parabólicos. ​➡️ Receptor central (torre con campo de helióstatos): Una tecnología emergente con un gran potencial para las plantas del futuro. ​➡️ Reflectores lineales de Fresnel: En fase comercial, destacan por su eficiencia y menor coste de instalación. ​➡️ Discos parabólicos de Stirling: Aunque prometedora, requiere más desarrollo para alcanzar la fase comercial..
by Ilde Rubio 1 January 2025
Spain has set itself the task of reducing carbon emissions by 2050. This challenge means advancing in alternative energies, an opportunity for job creation and economic growth. The Law on Climate Change and Energy Transition establishes this prospect in two phases. Phase 1 – 2030 Reduce greenhouse gas (GHG) emissions by a minimum of 20% below 1990 levels. Generate at least 74% of Spain’s electricity from renewable energy. Guarantee 35% of final energy consumption from alternative sources. Improve energy efficiency by 35%. Phase 2 – 2050 Achieve 100% renewable energies. Reduce greenhouse gas emissions by 90%, in line with the 2030 Agenda and the Paris Agreement on Climate Change. To achieve these objectives, increases in renewable generation capacity (wind and photovoltaic power) by at least 3 GW/year are planned in the coming decades. In addition to promoting renewable energy, Spain intends to limit the award of new licenses for extraction and fracking activities and to lead a fair transition for regions that are coal-industry dependent. In 2023 Spain generated 134,321 GWh of renewable energy (50.3% of the total annual generation). The latest RECAI (EY) Index 2023, which ranks countries on the attractiveness of their renewable energy investment and deployment opportunities, places Spain at 8 th in the world. All these circumstances make Spain an excellent destination to invest in renewable energy.
by Ilde Rubio 22 December 2024
Masdar ha adquirido Saeta Yield, una empresa líder en EnergíasRenovables en España y Portugal, con 745MW de activos operativos y una cartera de desarrollo de 1,6GW. Esta adquisición respalda los ambiciosos planes de crecimiento de Masdar en Europa y marca un hito importante en nuestro camino hacia alcanzar una capacidad de 100 GW en todo el mundo para 2030. Masdar has acquired Saeta Yield, a leading Renewable Energy company in Spain and Portugal, with 745MW of operating assets and a development portfolio of 1.6GW. This acquisition supports Masdar's ambitious growth plans in Europe and marks an important milestone on our path to achieving 100 GW capacity worldwide by 2030.
by Ilde Rubio 18 December 2024
Webs que ofrecen trabajo en zonas específicas (España, Dubai, USA, Europa,..) o en todo el mundo. Los mas conocidos portales para publicar ofertas o buscarlas. 19/12/2024 Bayt: https://www.bayt.com/ Bebee: https://bebee.com/ Bewanted: https://www.bewanted.com/ Buscojobs: https://www.buscojobs.com.es/ Careerbuilder: https://www.careerbuilder.com/ Cornerjob: https://www.cornerjob.com/ Domestika: https://www.domestika.org/ Dubaicareers: https://dubaicareers.ae/ Dubaijobs: https://www.dubaijobs.net/ ECjobs: https://ec.europa.eu/ Empleate: https://www.empleate.gob.es/ Empleomarketing: https://empleomarketing.com/ Eurojobs: https://eurojobs.com/ Europeanjobstoday: https://europeanjobdays.eu/ Experteer: https://www.experteer.es/ Flexjobs: https://www.flexjobs.com/ Getwork: https://getwork.com/ Glassdoor: https://www.glassdoor.com/ Hhuman: https://hhuman.es/ Indeed: https://indeed.com/ Infoempleo: https://www.infoempleo.com/ Infojobs: https://www.infojobs.net/ Iuristalent: https://www.iuristalent.com/ Job: https://www.job.com/ Jobatus: https://www.jobatus.es/ Jobfie: https://www.jobfie.es/ Joblist: https://www.joblist.com/ Jobomas: https://jobomas.com/ Jobtoday: https://jobtoday.com/ Join: https://join.com/es/ Jooble: https://es.jooble.org/ LinkedIn: https://www.linkedin.com/ Luxetalent: https://www.luxetalent.es/ Mapjobs: http://www.mapjobs.es/ Marketyou: http://www.marketyou.com/ Milanuncios: https://www.milanuncios.com/ofertas-de-empleo Monster: https://www.monster.com/ Naukrigulf: https://www.naukrigulf.com/ Opcionempleo: https://www.opcionempleo.com/ Page: https://www.page.com/ Primer empleo: https://www.primerempleo.com/ Simplyhired: https://www.simplyhired.com/ Studentjob: https://www.studentjob.es/ Studentjob: https://www.studentjob.es/ Talento: https://talent.com/ Talentoteca: https://www.talentoteca.es/ Tecnoempleo: https://www.tecnoempleo.com/ Tecnoempleo: https://www.tecnoempleo.com/ Theguardianjobs: https://jobs.theguardian.com/ Ticjob: https://ticjob.es/ Totaljobs: https://www.totaljobs.com/ Trabajando: https://www.trabajando.es/ Trabajojusto: https://www.trabajojusto.com/ Trabajojusto: https://www.trabajojusto.com/ Trabajos: https://www.trabajos.com/ Turijobs: https://www.turijobs.com/ Twago: https://twago.talent-pool.com/ Universia: https://www.universia.net/es/empleo Usajobs: https://www.usajobs.gov/ Welcometothejungle: https://www.welcometothejungle.com/ What jobs: https://whatjobs.com/ Ziprecruiter: https://www.ziprecruiter.co.uk/
More posts
Share by: